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Abstract—This paper presents a comprehensive study address-
ing the challenging problem of acoustic howling suppression
(AHS) through the fusion of Kalman filter and deep learning
techniques. We introduce two integration approaches: Hybri-
dAHS, which concatenates Kalman and neural networks (NN),
and NeuralKalmanAHS, where NN modules are embedded inside
the Kalman filter for signal and parameter estimation. In
HybridAHS, we explore two implementation methods. One is
trained offline using pre-processed signals with a light training
burden, while the other employs a recursive training strategy
with training signals generated adaptively. The offline model
serves as an initialization for recursively training the other
model. With NeuralKalmanAHS, we harness the power of NN
modules to refine the reference signal and improve covariance
matrices estimation in the Kalman filter, resulting in enhanced
feedback suppression. Our methods capitalize on the strengths of
traditional and deep learning-based AHS techniques. We have ex-
plored different variants of combining Kalman filter and NN and
systematically compared their howling suppression performance,
providing users with versatile solutions for addressing AHS.
Furthermore, by employing the proposed recursive training, we
effectively mitigate the mismatch issues that plagued previous
NN-based AHS methods. Extensive experimental results show
the superiority of our approach over baseline techniques.

Index Terms—Acoustic howling suppression, neural networks,
Kalman filter, hybrid method, recursive training

I. INTRODUCTION

Acoustic howling is a common phenomenon in acoustic am-
plification systems where amplified sound from a loudspeaker
inadvertently gets captured by nearby microphones and subse-
quently re-amplified, leading to an undesirable feedback loop
that repeatedly amplifies specific frequencies [1]–[3]. This
self-reinforcing process leads to a high-pitched, bothersome
sound known as acoustic howling. It is commonly observed
in audio systems like hearing aids [4], [5], public addressing
systems [6], and karaoke. The presence of howling not only
poses a threat to the functionality of the audio devices but also
poses potential risks to the human hearing system.

Existing techniques for mitigating acoustic howling, known
as acoustic howling suppression (AHS), comprise passive
and active methods. Passive approaches involve manual in-
terventions, like repositioning microphones or loudspeakers
and adjusting loudspeaker volumes. While effective to some
extent, these methods are limited by their reliance on human
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adjustments and may not be practical in real-time dynamic
scenarios. Active methods, on the other hand, process mi-
crophone signals for howling suppression. Traditional tech-
niques include gain control [7], [8], which adjusts microphone
gain automatically to manage feedback amplification but may
struggle with complex howling scenarios. Notch filters [9]–
[11] target specific frequencies associated with howling, but
may lack stableness and be harmful to target sound. The
adaptive feedback cancellation (AFC) method uses adaptive
filters to estimate the howling component in the microphone
signal and then subtracts it to suppress howling [5], [12]–
[15]. Although AFC techniques like Kalman filter [16], [17]
demonstrate greater adaptability compared to some traditional
methods, they exhibit sensitivity to control parameters and may
face challenges in addressing nonlinear distortions.

Distinguishing acoustic howling from other acoustic irreg-
ularities, particularly acoustic echo [18]–[21], is essential for
the development of effective suppression techniques. Acoustic
howling and acoustic echo share some common traits, both
being products of feedback in communication systems, and
mishandling acoustic echo can trigger howling [22]. However,
these two issues diverge in their origin and attributes. Howling
originates from the same source as the target signal and
emerges gradually, rendering its suppression notably more
complex when contrasted with acoustic echo, which typically
stems from a different source (e.g., a far-end speaker).

Deep learning has showcased remarkable capabilities in
dealing with acoustic echo problems [23]–[27], and more
recently, it has emerged as a viable solution for tackling AHS
tasks [22], [28]–[33]. Chen et al. [28] introduced a deep learn-
ing method for howling detection, and subsequent approaches
leveraged deep learning for howling suppression. Methods like
howling noise suppression [29] and deep marginal feedback
cancellation (DeepMFC) [30] treat AHS as a noise suppression
task and train an NN module offline to directly enhance
target signal from microphone recording that already has
howling in it. Recently, Zhang et al. [22], [31] proposed a
solution named DeepAHS for howling suppression by utilizing
teacher-forcing learning [34], [35] and demonstrating better
performance compared to previous methods. Neural network
(NN) based methods demonstrate remarkable performance and
the ability to learn intricate patterns from data, making them
well-suited for nonlinear modeling and feature extraction.
However, previous NN-based AHS methods have limitations
as they are trained on offline-generated microphone signals
without considering the recursive nature of acoustic howling
during model training, leading to a mismatch during real-time
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inference and limiting their effectiveness [36]. This highlights
the need for further research to address this challenge and
enhance the robustness of deep learning-based approaches for
acoustic howling suppression.

In this paper, we propose to hybrid traditional Kalman filter
and NN for howling suppression. Two distinct approaches
are introduced: HybridAHS and NeuralKalmanAHS. In the
HybridAHS approach, we cascade the Kalman filter and NN
to form a two-stage system where the Kalman filter is utilized
for initial howling suppression. Its output, together with the
microphone signal, is subsequently fed into the NN for further
enhancement. Two variants of HybridAHS are explored in our
study. One is trained using Kalman filter pre-processed signals
and microphone signals generated offline through teacher
forcing learning, facilitating efficient offline training and re-
ducing training burden. The other variant employs recursively
training with adaptively generated training signals to mitigate
the mismatch problem, thereby enhancing performance during
real-time inference. Importantly, the offline model plays a
vital role as an initialization for the recursively trained model.
The second approach, NeuralKalmanAHS, also utilizes the
recursive training strategy but combines Kalman and NN in a
different manner. In this approach, we embed the NN module
inside the Kalman filter, leveraging its power to estimate a
refined reference signal and accurate covariance matrices for
updating the weights of the Kalman filter. This incorporation
enhances feedback suppression capabilities, enabling more
effective howling suppression.

This study makes three significant contributions. First, the
proposed approaches harness the benefits of both Kalman filter
and NN, and offer a comprehensive solution to the complex
problem of howling suppression. Second, we introduce a novel
training paradigm that recursively generates training signals
to ensure consistency between training and inference stages,
effectively eliminating the mismatch problem, and holding
the potential to deliver exceptional performance. Third, we
investigate different variants of the proposed methods and
systematically compare their performance, providing users
with the flexibility to employ these approaches in diverse
configurations.

The remainder of this paper is organized as follows. Section
II introduces the signal model of acoustic howling and existing
methods for howling suppression. Section III and Section IV
describe the proposed HybridAHS and NeuralKalmanAHS
methods, respectively. The experimental setup is given in
Section V. Section VI shows the evaluation results and com-
parisons. Finally, Section VII concludes the paper.

II. ACOUSTIC HOWLING SUPPRESSION

A. Acoustic howling
Let us consider a typical single-channel acoustic amplifica-

tion system as shown in Fig. 1. In this setup, the microphone
captures the target speech signal, represented as s(t), which is
then transmitted to the loudspeaker for acoustic amplification.
The loudspeaker signal x(t) is played out and arrives at the
microphone as an acoustic feedback denoted as d(t):

d(t) = x(t) ∗ h(t) (1)
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Fig. 1. Configuration of an AHS system.

and the corresponding microphone signal is:

y(t) = s(t) + d(t) (2)

where t denotes the time instant, ∗ denotes linear convolution,
h(t) represents the acoustic path from loudspeaker to micro-
phone.

Without any AHS processing, the loudspeaker signal x(t)
will be an amplified version of the previous microphone signal
y(t − ∆t) and undergo repeated re-entry into the pickup,
leading to the representation of the microphone signal as:

y(t) = s(t) + [y(t−∆t) ·G] ∗ h(t) (3)

where ∆t indicates the system delay from the microphone to
the loudspeaker, and G denotes the amplifier gain. With proper
howling suppression, the AHS module will output an estimate
of the target signal ŝ, and the corresponding microphone signal
will be:

y(t) = s(t) + [ŝ(t−∆t) ·G] ∗ h(t) (4)

The recursive relationship between y(t) and y(t − ∆t)
and the possible leakage in ŝ(t − ∆t) give rise to the re-
amplification of the playback signal, creating a feedback loop
that manifests as an unpleasant, high-pitched sound known as
acoustic howling.

The expression in equation (2) closely resembles the for-
mulation of the acoustic echo cancellation (AEC) problem.
However, it’s crucial to note that in AEC, the signal d(t)
is typically deterministic and originates from far-end speech,
remaining independent of the near-end speech. In this context,
leveraging the far-end signal x(t) as a reference signal facili-
tates the estimation of the playback component in microphone
recordings, enabling effective echo removal. Conversely, in
the context of the AHS problem, the playback signal d(t) is
intricately tied to the microphone signal received. Any leakage
of the playback signal will be amplified and subsequently
captured again by the microphone. Additionally, the playback
signal in this context encompasses the same content as that of
the target speech, posing a challenge in suppressing howling
without distorting the speech, rendering it a more complex
task compared to AEC.

B. Kalman filter for AHS
Kalman filter based methods address howling suppression

by modeling the acoustic path between loudspeaker and micro-
phone with an adaptive filter w(t) and then subtracting the cor-
responding estimated playback signal d̂(t) from microphone
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recording [16], as shown in the left side of Fig. 2. In this study,
we implement the Kalman filter in the frequency domain and
denote the filter as Wm where m denotes the frame index.
We refer to the diagram of our proposed NueuralKalmanAHS
method, given in Fig. 4, for introducing the frequency-domain
Kalman filter (FDKF). FDKF can be interpreted as a two-step
procedure, prediction and updating. The estimating of filter
weights is achieved through the iterative feedback from the
two steps.

In the prediction step, the estimated near-end signal Ŝm,
also known as the error signal Em of the system, is obtained
as:

Em = Ym −RmŴm (5)

where Sm, Ym, and Rm are the short-time Fourier transform
(STFT) of the target speech, microphone, and reference signal
respectively. For the AHS task, we use the loudspeaker signal
obtained in the previous frame, Xm−1, as the reference signal
Rm.

In the update step, as shown in Fig. 4(b), the state equation
for updating echo path Ŵm is defined as,

Ŵm+1 = A[Ŵm +KmEm] (6)

where A is the transition factor. Km denotes the Kalman gain,
which is calculated as:

Km = PmRH
m[RmPmRH

m +ΨSS,m]−1 (7)

with the state estimation error covariance Pm estimated
through:

Pm+1 = A2[I− αKmRm]Pm +Ψ∆∆,m (8)

where ΨSS,m and Ψ∆∆,m are observation noise covariance
and process noise covariance, respectively. They are approxi-
mated by the covariance of the estimated near-end signal Em

and the echo-path Ŵm, respectively:

ΨSS,m+1 = λΨSS,m + (1− λ)|Em|2 (9)

Ψ∆∆,m+1 = λΨ∆∆,m + (1− λ)(1−A2)|Ŵm|2 (10)

where λ represents a smoothing parameter ranging from 0
to 1. More details can be found in [16]. Noted that the
approximations presented in equations (7) and (8) rely largely
on the presumption of accurately estimated covariance matri-
ces ΨSS,m and Ψ∆∆,m. Inaccurate estimation of covariance
metrics hinders the performance of the Kalman filter.

C. Deep learning based AHS and the mismatch problem

The recursive nature of acoustic howling poses challenges
in generating suitable training signals, as the current input
depends on the previous outputs. Previous NN-based meth-
ods address AHS by training models using offline-generated
microphone signals. Howling noise suppression [29] and
DeepMFC [30] trains the NN model by extracting the target
signal from the microphone signal generated using equation
(3), i.e., microphone signal without considering AHS in the
acoustic loop. On the other hand, DeepAHS is based on
the assumption that once the model is properly trained, it
should attenuate feedback and send only the target speech to

the loudspeaker for amplification. Therefore, the microphone
signals used for training DeepAHS are generated through
teacher forcing learning by replacing ŝ(t) with the teacher
signal s(t) in equation (4):

y∗(t) = s(t) + [s(t−∆t) ·G] ∗ h(t) (11)

However, all of these methods encounter a mismatch prob-
lem during the inference stage, as the real microphone sig-
nal received during inference is generated recursively using
the processed microphone signal ŝ(t), described by equation
(4), differs from the training signals used for training these
NN methods. While DeepAHS improves upon DeepMFC by
employing teacher-forcing learning, the issue of mismatch
persists.

III. HYBRIDAHS: CONCATENATION OF KALMAN FILTER
AND NN

This section presents the proposed HybridAHS method.
HybridAHS combines the Kalman filter and NN in a cascade
manner to address acoustic howling. Specifically, the FDKF
initially processes the microphone recording. The output of
this process, combined with the original microphone record-
ing, serves as input for training the NN module to obtain
an estimation of the target signal. By cascading the Kalman
filter and NN, we leverage the advantages of both methods:
1) using the FDKF pre-processed signal provides more infor-
mation for training the NN module, and 2) using NN could
further enhance the output of FDKF and leads to a robust
AHS solution. We implement this approach using offline and
recursive training strategies, and corresponding diagrams are
shown in Fig. 2 and Fig. 3, respectively.

A. HybridASH v1: Offline training with pre-processed signals

The initial version of HybridAHS, denoted as Hybri-
dAHS v1, is trained offline utilizing pre-processed signals.
Specifically, the process involves the pre-processing of the
microphone signal using the Kalman filter, yielding the output
e(t). Separately, the NN module is trained offline using e(t)
and an ideal microphone signal generated through teacher
forcing learning, denoted as y∗(t) (as shown in equation
(11)), for estimating the target signal ŝ(t). A comprehensive
illustration of the proposed method can be found in Fig. 2. The
method is implemented using frequency domain processing
techniques. To enhance the clarity of signal relationships and
facilitate a better understanding of the entire process, we utilize
time-domain labels for method description.

Once the NN module is trained, the pre-trained model is
inserted into the acoustic loop during streaming inference
to evaluate its performance for howling suppression. The
detailed algorithm is shown in Algorithm 1, where NN(·) and
K(·) denote the parameters of the NN and Kalman module,
respectively. As illustrated in Algorithm 1, HybridASH v1
follows distinct procedures during offline training and stream-
ing inference stages. Specifically, the loudspeaker signal X,
employed as the reference signal R in the Kalman filter, is
derived from the error signal E and the output of the NN
module Ŝ during offline training and streaming inference,
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Fig. 2. Diagrams of HybridAHS v1: offline training method.

Algorithm 1 HybridAHS v1 with offline training.

procedure TRAINING(Y∗ → Ŝ)
Randomly select a speech and AHS setttings: S, ∆t, G
Generate training microphone signal through Equ. (11):

Y∗ = S+G · Delayed S ·H
Initialize Kalman filter K(·)
while m ≤M do ▷ M is the total number of frames

Em ← K(Ym,Rm) ▷ Output of Kalman filter
K← (Em,Rm) ▷ Update Kalman filter
Rm+1 ← Xm = Delayed Em ·G ▷ Update Ref.
Ym+1 = Sm+1 +Xm ·H ▷ Update Mic.

end while
E← Em ▷ Save processed frame to output
Ŝ← NN(Y∗,E) ▷ Note that both Y∗ and E are generated

offline before NN training
Loss← (S, Ŝ) ▷ Get loss
NN(·)← Loss ▷ Update DNN parameters

end procedure

procedure STREAMING INFERENCE(Ym → Ŝm)
Randomly select a speech and AHS setttings: S, ∆t, G
Initialize Kalman filter K(·), load NN module NN(·)
while m ≤M do

Em ← K(Ym,Rm)
Ŝm ← NN(Ym,Em) ▷ AHS output at frame m
K← (Em,Rm) ▷ Update Kalman filter
Rm+1 ← Xm = Delayed Ŝm ·G
Ym+1 = Sm+1 +Xm ·H

end while
Ŝ← Ŝm

end procedure

respectively. Additionally, the pre-processed signals Y∗ and
E are employed for training NN(·) offline, whereas the inputs
utilized during inference are generated recursively, resulting
in a mismatch issue. However, the utilization of FDKF pre-
processed signals contributes to enhanced information and
diminishes the mismatch, particularly when compared to pre-
ceding NN-only-based AHS approaches [30], [31].

B. HybridAHS v2: Recursive training of NN

Based on the foundation of HybridAHS v1, we closely
examine the fundamental process of howling formation and
introduce a novel training framework to address the mismatch
issue. The modified version, referred to as HybridAHS v2,
maintains the same inference processings as HybridAHS v1
but introduces a novel training paradigm to ensure consistency
between the processing procedures during training and infer-
ence. In the training stage, we integrate the NN module into the
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Fig. 3. Diagrams of HybridAHS v2: recursive training method.

Algorithm 2 HybridAHS v2 with recursive training.

procedure TRAINING/INFERENCE (Ym → Ŝm)
Randomly select a speech and AHS setttings: S, ∆t, G
Initialize Kalman filter K(·)
if Training then

Initialize NN module NN(·)
or load offline pre-trained HybridAHS v1 model

end if
if Streaming inference then

Load pre-trained NN module NN(·)
end if
while m ≤M do

Em ← K(Ym,Rm)
Ŝm ← NN(Ym,Em) ▷ AHS output at frame m
K← (Em,Rm) ▷ Update Kalman filter
Rm+1 ← Xm = Delayed Ŝm ·G ▷ Update Ref.
Ym+1 = Sm+1 +Xm ·H ▷ Update Mic.

end while
Ŝ← Ŝm ▷ Save processed frame to final output
if Training then

Loss← (S, Ŝ) ▷ Get loss
NN(·)← Loss ▷ Update DNN parameters

end if
end procedure

acoustic loop, generating signals online in a recursive manner.
Each processed frame serves as the input for the subsequent
frame, preserving the recursive nature of howling suppression.

Although this methodology requires more training time, it
effectively circumvents the mismatch problem that previous
NN-based AHS methods encountered and results in enhanced
performance and improved robustness. Details of the proposed
method are shown in Fig. 3 and Algorithm 2.

C. Trainability: from HybridAHS v1 to HybridAHS v2

Introducing recursive training for NN-based AHS presents
some unique challenges, mainly related to achieving con-
vergence. The parameters of the NN module are typically
initialized randomly, which does not guarantee any howling
suppression during the initial training stages. Therefore, the
recursive nature of howling generation can lead to severe
signal accumulation and energy explosion, causing signal
values to exceed Python’s maximum limit and triggering “not
a number (NAN)” warnings. Consequently, the NAN issue
hinders the gradient calculations required for model updates.
This issue is especially prominent during batch training, where
the convergence failure of one utterance affects the loss value
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Fig. 4. NN augmented Kalman filter (NeuralKalmanAHS): (a) overall
system, (b) prediction of adaptive filter Ŵ, and (c) prediction of state
estimation error covariance P.

Algorithm 3 NeuralKalmanAHS.

procedure TRAINING/INFERENCE (Ym → Ŝm)
Randomly select a speech and AHS setttings: S, ∆t, G
Initialize Kalman filter K(·) with filter weights Ŵ0

if Training then
Initialize NN modules: NNR(·),NNΨ1(·),NNΨ2(·)

end if
if Streaming inference then

Load pre-trained NN modules:
NNR(·),NNΨ1(·),NNΨ2(·)

end if
while m ≤M do

Em = Ym −Rm · Ŵm ▷ Output of Kalman filter
Ŵm+1 ← (Ŵm,Em,Rm,ΦSS,m,Φ∆∆,m) ▷ Update

Kalman filter K(·)
Ym+1 = Sm+1 +G · Delayed Em ·H ▷ Mic.
Rm+1 ← NNr(Ym,Em) ▷ Estimate Ref.
ΦSS,m+1 ← NNΦ1(Em) ▷ Estimate ΦSS

Φ∆∆,m+1 ← NNΦ2(Ŵm) ▷ Estimate Φ∆∆

end while
Ŝ← Em ▷ Save processed frame to final output
if Training then

Loss← (S, Ŝ) ▷ Get loss
NNR(·),NNΨ1(·),NNΨ2(·)← Loss ▷ Update NN

end if
end procedure

calculated for the entire batch. To address the convergence
problem and enhance trainability, we propose two strategies:
howling detection (HD) and initialization using an offline-
trained model, HybridAHS v1.

1) Howling detection: One effective strategy is to incorpo-
rate howling detection into the training process. Specifically,
during recursive training, we continuously monitor the micro-
phone signal for the presence of howling, identified by the
amplitude of the microphone signal consistently exceeding a
threshold for 100 consecutive samples. Upon detection, further
processing of the current utterance is halted, and only the
already processed portion is used for loss calculation. By
excluding the howling signal from further processing and loss
calculation, the potential NAN issue is avoided and its impact
on the convergence of the NN module is minimized.

2) Initializing HybridAHS v2 using pre-trained Hybri-
dAHS v1: Another strategy that significantly enhances train-
ability and accelerates the training process involves utilizing
the pre-trained offline model, HybridAHS v1, to initialize
the NN parameters in HybridAHS v2. Despite potential mis-
matches in online streaming scenarios, the pre-trained offline
model still demonstrates superior howling suppression com-
pared to randomly initialized NN modules during the initial
training stages. By employing it as an initialization for the
NN module in HybridAHS v2, we prevent the occurrence of
NAN issues and ensure convergence. Through this, the training
of HybridAHS v2 can be seen as a recursive fine-tuning of
HybridAHS v1, mitigating the mismatch problem that arises
from training with offline signals.

IV. NEURALKALMANAHS: INTEGRATING NN INTO
KALMAN FILTER

This section introduces the proposed NeuralKalmanAHS
method. The NeuralKalmanAHS method enhances the Kalman
filter, described in Sec. II-B, by incorporating neural network
modules for estimating reference signals and covariance matri-
ces. The implementation details of this approach are elaborated
in Fig. 4 and Algorithm 3.

A. NeuralKalmanAHS with estimated reference signal

The reference signal holds paramount importance in the
Kalman filter. It serves as a crucial foundation for accurate
estimation and adaptive filtering. In the context of acoustic
howling suppression, a proper reference signal aids the filter
in distinguishing between desired speech and undesired feed-
back components, guiding the howling suppression process
effectively. In the conventional setup of the Kalman filter
for AHS, the processed signal from the preceding frame is
employed as the reference signal. However, in scenarios with
severe howling, especially during the convergence period, the
reference signal could have strong leakage and might not
accurately represent the actual acoustic environment. This
can mislead the filter and potentially result in suboptimal or
unstable suppression outcomes.

Introducing NN to refine or adjust the original reference
signal has been established in previous research as an effective
means to amplify the capabilities of adaptive algorithms [37]–
[39]. To heighten this approach, we propose a method that
integrates a learned reference signal Rm into the Kalman
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filter framework by using original reference signal Em−1 and
microphone recording Ym as inputs:

Rm = NNR(Ym,Em−1) (12)

where NNR denotes the parameters of the network responsible
for estimating the reference signal.

This advancement leverages the ability of the learned refer-
ence signal to encompass intricate aspects of the acoustic envi-
ronment. It has the potential to reduce the updating complexity
of the Kalman filter, resulting in enhanced acoustic howling
suppression and a more resilient system. Furthermore, it’s
noteworthy that the traditional algorithm simplistically models
the playback signal as a linear transformation of the reference
signal, disregarding the nonlinear distortions introduced by
amplifiers and loudspeakers.

B. NeuralKalmanAHS with estimated covariance matrices

Within the Kalman filter framework, covariance matrices
ΨSS,m and Ψ∆∆,m encapsulate the uncertainties associated
with state and measurement variables. In the context of AHS,
the accuracy with which covariance matrices are estimated
influences the filter’s ability to make accurate predictions and
adapt to changing conditions.

Conventional approaches to estimating covariance matrices
in the Kalman filter typically assume linearity and stationary
conditions, as demonstrated in equations (9) and (10). How-
ever, these methods can be sensitive to noise and outliers,
leading to potentially unstable estimates.

We propose to use neural networks to learn these covariance
matrices:

Ψss,m = NNΨ1(Em) (13)

Ψ∆∆,m = NNΨ2(Ŵm) (14)

where NNΨ1 and NNΨ2 denote the two NN modules utilized
for estimating Ψss,m and Ψ∆∆,m, respectively. Estimating
these covariance matrices using NN modules trained jointly
excels in capturing intricate relationships, enhancing accuracy
and robustness.

V. EXPERIMENTAL SETUP

A. Data preparation

The experiments are carried out using the AISHELL-2
dataset [40]. We simulate 10,000 pairs of room impulse
responses (RIRs) using the image method [41] with random
room characteristics and reverberation times (RT60) randomly
selected within the range of 0 to 0.6 seconds. Each RIR
pair includes RIRs for the near-end speaker and loudspeaker
positions. The system delay ∆t is randomly generated within
the range of 0.15 to 0.25 seconds, and the amplification gain
is randomly selected within the range of 1 to 3. For models
trained offline, we randomly select a pair of RIRs and a speech
signal, generating the training signals offline following Fig. 2.
In the case of models trained recursively, the chosen RIRs
and speech signals are fed to the closed loop to recursively
generate the training signals and train the model. The training,
validation, and testing set we used includes 38,000, 1000,

and 200 utterances, respectively. The testing data compares
different utterances and RIRs compared to the training and
validation data.

B. Implementation details

The NN modules in the proposed methods can be imple-
mented using different network structures. We utilize recurrent
neural networks with long short-term memory (LSTM) [42]
in our proposed methods and process signals in the frequency
domain in a frame-by-frame manner. To reduce the latency
and make the model feasible for deployment on real devices,
we restrict the frame size and frame shift to 8 ms and 4
ms, respectively, and used only the magnitude spectrogram of
signals as input features for model training. The NN modules
used for signal estimation are implemented using a 2-layer
LSTM with 300 units in each hidden layer, and the NN
modules for covariance matrices are implemented using an
LSTM cell with 65 units.

1) HybridAHS v1: The magnitude spectrogram of Y∗ and
E are concatenated and fed to the 2-layer LSTM. The output
of LSTM goes through a linear layer followed by a sigmoid
activation function to estimate a ratio mask M. This ratio mask
is then applied upon |Y∗| to get an estimate of the magnitude
of the target signal:

|Ŝ| = M · |Y∗| (15)

where · represents point-wise multiplication. The training loss
is defined as the mean absolute error (MAE) of magnitude
spectrogram:

Loss = MAE(|Ŝ|, |S|) (16)

2) HybridAHS v2: The network structure of NN and the
loss function used in HybridAHS v2 remain identical to those
of HybridAHS v1. The key difference lies in the generation of
inputs and the training process. It’s important to note that while
the input signals are processed recursively in a frame-by-frame
manner, the loss function is calculated at the utterance level
after processing a complete utterance, as shown in Algorithm
2.

3) NeuralKalmanAHS: The NNR module for reference
signal estimation is the 2-layer LSTM described previously.
A mask MR is obtained through NNR and applied on
microphone signal to get a refined reference signal:

|R| = MR · |Y| (17)

The covariance matrices are estimated using two LSTM cells
each followed a linear layer and a sigmoidal activation layer,
denoted as NNΨ1

and NNΨ1
, respectively. Note that we

do not have ground truth for R, Ψ∆∆, and Ψss to guide
model training. These estimations are regarded as interme-
diate outputs which are used directly in the Kalman filter
for filter weights updating. The three NN modules in Neu-
ralKamanAHS are trained jointly to minimize the difference
between the output of Kalman filter and the target signal:

Loss = MAE(|E|, |S|) (18)
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TABLE I
AVERAGE SDR AND PESQ RESULTS OF DIFFERENT METHODS FOR HOWLING SUPPRESSION.

Models SDR ↑ PESQ ↑
G 2 2.5 3 2 2.5 3

no AHS -31.86 ± 5.66 -33.10 ± 3.96 -33.21 ± 3.94 – – –
Kalman filter [16] -10.33 ± 14.84 -14.88 ± 15.14 -18.25 ± 14.77 1.65 ± 0.73 1.44 ± 0.70 1.30 ± 0.64

DeepMFC [30] -2.78 ± 9.44 -5.59 ± 11.40 -7.69 ± 12.26 1.88 ± 0.59 1.70 ± 0.62 1.56 ± 0.59
DeepAHS [31] 0.04 ± 8.60 -3.15 ± 12.01 -6.32 ± 14.07 2.42 ± 0.65 2.04 ± 0.79 1.84 ± 0.77
NNAFC [43] 1.63 ± 3.34 -0.46 ± 7.46 -2.50 ± 9.94 2.14 ± 0.44 1.95 ± 0.48 1.80 ± 0.53

HybridAHS v1 1.25 ± 5.79 -1.45 ± 9.60 -3.49 ±10.90 2.33 ± 0.53 2.22 ± 0.59 1.95 ± 0.62
HybridAHS v2 1.92 ± 1.70 1.28 ± 1.47 0.84 ± 1.30 2.35 ± 0.36 2.21 ± 0.34 2.11 ± 0.32

HybridAHS v2 (cRM2) 3.04 ± 1.34 2.49 ± 1.11 2.11 ± 0.98 2.40 ± 0.38 2.25 ± 0.36 2.13 ± 0.34
NeuralKalmanAHS 2.65 ± 1.70 1.98 ± 1.49 1.45 ± 1.31 2.33 ± 0.41 2.17 ± 0.39 2.04 ± 0.37

C. Comparison Methods

We compare our proposed methods with traditional Kalman
filter based AFC and three recently proposed NN-based AHS
methods. For a fair comparison, all the NN-based baseline
methods are implemented using the same two-layer LSTM net-
work and experimental setup as that utilized in our proposed
methods. If not mentioned particularly, magnitude ratio mask
(RM) is used for signal estimation in all NN-based methods.

• Kalman filter [16]: We refer to the introduction in
Sect.II-B for implementing Kalman filter based AFC. In
our implementation, we set the transition factor A to
0.9999, α to 0.5, and λ to 0.9 to achieve good howling
suppression and balance the convergence speed.

• DeepMFC [30]: We implement this method utilizing the
parallel signal generation strategy introduced in [30].
The input for training the DeepMFC is a microphone
signal generated using a closed-loop system, y(t) in
equation (3), operating at marginally stable gain. To fulfill
the marginally stable scenario, the training signals are
generated with the aid of howling detection, and only
microphone signals without howling or with light howling
are utilized for model training.

• DeepAHS [31]: Microphone signal generated through
teacher forcing learning, y∗(t) and a delayed version
of it are used for training DeepAHS. It is shown in
[31] that using a delayed microphone as additional input
helps improve howling suppression performance and the
delay is estimated during the initial stage using cross-
correlation methods.

• NNAFC [43], [44]: This method is a variant of the neural-
AFC method proposed in [43], where NN is used for step
size estimation in the traditional AFC method. Another
recently proposed method employs the same idea and
utilizes a trainable NN to output the adaptive Kalman
gain in real-time [44]. We refer to these two papers
and implement an NN-boosted AFC method, denoted as
NNAFC.

D. Evaluation metrics

Two metrics are used to evaluate AHS performance: signal-
to-distortion ratio (SDR) [45] and perceptual evaluation of
speech quality (PESQ) [46]. Given PESQ’s insensitivity to

scale, we emphasize SDR results to demonstrate the effec-
tiveness of suppressing howling, while relying on PESQ to
assess speech quality preservation. Larger results indicate
better howling suppression and speech quality.

VI. EXPERIMENTAL RESULTS

A. Comparison of different AHS methods

We initiate our analysis by comparing the proposed tech-
niques with baseline methods across different amplification
gain scenarios. Average SDR and PESQ values are tabulated
in Table I, while Fig. 5 offers corresponding spectrograms. 1

The presented results are based on testing over 200 utterances
and are expressed as mean ± standard deviation. This
presentation underscores the efficacy and consistency of the
AHS methods in suppressing howling.

It is seen from the table that without implementing any
form of howling suppression, “no AHS”, the average SDR
values of the output remain below 30 dB when the am-
plification gain is larger than or equal to 2. This indicates
that howling dominates the output signal, overwhelming the
speech signal to the point that we primarily hear howling
with minimal discernible speech information, as seen from
Fig. 5 (b). Consequently, calculating PESQ values for the “no
AHS” case becomes redundant, as the presence of meaningful
speech is negligible in this context. Utilizing the Kalman
filter achieves a notable howling suppression compared to the
“no AHS” case, contributing to an average SDR increase of
21.53 dB for “G = 2”, 18.22 dB for “G = 2.5”, and 14.96
dB for “G = 3”. Despite this improvement, residual howling
remains prominent within the output. Moving to NN-based
AHS methods, such as DeepMFC, DeepAHS, and NNAFC, a
substantial enhancement in howling suppression is achieved.
These methods notably surpass the performance of the Kalman
filter in terms of both SDR and PESQ.

Among our proposed methods, HybridAHS v1 is trained
offline and demonstrates comparable SDR and improved
PESQ outcomes compared to the finest baseline method. The
HybridAHS v2 approach, which undergoes recursive closed-
loop training, achieves notably superior SDR and PESQ results
compared to the baselines, particularly at higher amplification

1Demos are available in https://yixuanz.github.io/AHS 2023/.
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(a)

(b)

(c)

(d)

Moderate howling (G=1.5) Severe howling (G=3)

(e)

(f)

(g)

(h)

(j)

(i)

Fig. 5. Spectrograms of a test utterance at two different G levels: (a) target
signal, (b) no AHS, (c) Kalman filter, (d) DeepMFC, (e) DeepAHS, (f)
NNAFC (g) HybridAHS v1, (h) HybridAHS v2, (i) HybridAHS v2 (cRM2),
and (j) NeuralKalmanAHS.

gain (G) levels. Additionally, NeuralKalmanAHS, trained re-
cursively as well, attains higher SDR and comparable PESQ
results when compared against HybridAHS v2. In the later
part, we will delve into the performance of the proposed
Hybrid v2 method by experimenting with different masking
strategies. Among these strategies, the one that uses com-
plex ratio mask estimation [47], denoted as “HybridAHS v2
(cRM2)”, emerges as the most effective overall performer, is
also shown in the table.

Focusing on the standard deviation values of these methods,
it’s evident that the proposed recursively trained methods
exhibit significantly lower standard deviations in comparison
to their offline-trained counterparts. This discrepancy can
be attributed to the mismatch issue discussed earlier. The
recursive training of the NN module within the closed loop
effectively mitigates this mismatch problem, leading to a more
stable and consistent howling suppression performance.

Figure 5 displays spectrograms of a test utterance assessed
under moderate and severe howling scenarios. The output
without howling suppression bears a strong howling compo-
nent, rendering it unpleasant to listen to. Traditional Kalman

TABLE II
AVERAGE SDR AND PESQ RESULTS OF HYBRIDAHS V2 USING

DIFFERENT INPUTS AT G = 2.

Inputs Masked upon SDR ↑ PESQ ↑
[Kalman, Est] Kalman 2.00 2.15
[Mic, Kalman] Mic 1.92 2.35

[Mic, Kalman, Est] Mic 1.89 2.34

filter-based AFC partially suppresses howling at moderate lev-
els, but its efficacy diminishes as amplification gain becomes
larger, leading to severe howling. Neural Network based AHS
methods succeed in suppressing howling in both moderate
and severe scenarios. DeepMFC (Fig. 5 (d)), trained under
conditions of marginally stable gain, functions effectively at
low amplification levels but encounters difficulties as gains
become higher. DeepAHS tends to excessively suppress the
target signal, leading to energy reduction, which isn’t ideal
for acoustic amplification. NNAFC’s outputs retain howling
traces. Proposed methods exhibit better performance. Recur-
sively trained HybridAHS v2 surpasses offline trained Hybri-
dAHS v1. However, mild howling persists (depicted as contin-
uous horizontal lines) in the enhanced spectrogram (Fig. 5(h)).
Employing complex-domain estimation in HybridAHS v2 re-
solves this issue, as shown in Fig. 5 (i). In contrast, the
NeuralKalmanAHS method, also trained recursively, doesn’t
display this mild howling problem. A detailed comparison
between HybridAHS and NeuralKalmanAHS will be shown
later in Sect. VI-D.

B. Explorations regarding HybridAHS

This section delves into our investigation of the HybridAHS
approach, focusing on its convergence performance and the
impact of employing various inputs and masking strategies.

1) Convergence: The recursive training of HybridAHS v2
poses challenges in terms of achieving convergence. The
influence of the proposed strategies, specifically the howling
detection and initialization using HybridAHS v1, on the con-
vergence of HybridAHS v2 is visually depicted in Fig. 6 by
showing the descent of the validation loss obtained during the
initial stage of training. Without the implementation of any
strategies, achieving convergence is uncertain due to the NAN
issue highlighted in Sect. III-C. Introducing the HD strategy
effectively circumvents this issue and ensures the model’s
trainability. Furthermore, the initialization of the NN module
using a pre-trained HybridAHS v1 model plays a pivotal role
in the successful recursive training of HybridAHS v2, leading
to substantial enhancements in training convergence.

While the incorporation of both strategies marginally im-
proves convergence compared to using only initialization, it’s
important to note that the presence of the HD strategy remains
crucial. In scenarios where an offline pre-trained model is
unavailable, utilizing the HD strategy remains the most ef-
fective means of addressing the NAN issue and guaranteeing
the convergence of model training

2) Inputs: Our investigation extends to probing the howling
suppression capabilities of HybridAHS using different input
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Fig. 6. Convergence exploration of HybridAHS v2 with recursive training.

signals. In the context of the recursive training of Hybri-
dAHS, there are three signals available during training that
prove relevant: the microphone signal y(t), the output of the
Kalman filter e(t), and the estimated target signal ŝ(t). We’ve
undertaken an exploration by employing various combinations
of these signals as inputs for model training, and the outcomes
of these tests are presented in Table II.

In the first row of the table, we employ the Kalman filter’s
output as the main input signal and the estimated target signal
as the reference for training the NN module in HybridAHS v2.
The estimated mask is subsequently applied to the main input
signal, Kalman’s output, for estimating the target speech.
The experiment shown in the second row differs in that
the microphone signal serves as the main input signal with
Kalman’s output as reference signal.

The choice of the primary input signal prompts a significant
discussion. Intuitively, using the Kalman filter’s output as the
main input appears logical since it has already executed a cer-
tain degree of howling suppression. Consequently, extracting
the target signal from this output e(t) should theoretically
be easier in comparison to direct extraction from the raw
microphone signal y(t). However, this assumption relies on the
premise that the Kalman filter effectively tackles the howling
issue without introducing distortions to the target signal. Yet,
the reality unfolds a different story – the Kalman filter can
inadvertently distort the target signal while suppressing the
howling component. This inadvertently hampers the recovery
of the target from Kalman’s output, especially when distortions
are severe. In contrast, the raw microphone signal preserves the
entirety of the target signal component. Extracting the target
signal from this raw signal might prove relatively challenging,
as evidenced by a slightly lower SDR compared to the first
row. However, the PESQ value is higher, indicating improved
speech quality.

Incorporating all three signals as input doesn’t yield sub-
stantial performance variations but introduces added input
dimensions. As a result, we utilize the input configuration
outlined in the second row for our proposed method.

3) Masking strategies: The aim of this exploration is to as-
sess the impact of phase enhancement on overall performance.
Notably, Fig. 5(g) and (h) reveal the presence of slight howling
in the HybridAHS output, indicated by continuous horizontal
lines. This effect is primarily attributed to the network’s

1.6
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G = 2 G = 3

RM PSM cRM1 cRM2
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SQ
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R

(d
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1.2

1.8

2.4

3

G = 2 G = 3

RM PSM cRM1 cRM2

Fig. 7. Average SDR and PESQ results of HybridAHS v2 using different
masking strategies.

TABLE III
EXPLORATIONS REGARDING NEURALKALMANAHS.

SDR ↑ G=2 G=2.5 G=3
Kalman filter -10.33 -14.88 -18.25
Kalman filter + NNΨ1 +NNΨ2 1.38 0.98 0.60
Kalman filter + NNR 2.28 1.55 1.04
NeuralKalmanAHS 2.65 1.98 1.45
PESQ ↑ G=2 G=2.5 G=3
Kalman filter 1.65 1.44 1.30
Kalman filter + NNΨ1 +NNΨ2 1.77 1.64 1.51
Kalman filter + NNR 2.24 2.07 1.94
NeuralKalmanAHS 2.33 2.17 2.04

relatively small size and the absence of phase enhancement. To
address this, we analyze how different masking strategies influ-
ence howling suppression within HybridAHS v2: ratio mask
(RM), phase-sensitive mask (PSM) [48], and complex ratio
mask (cRM) [47]. Specifically, cRM2 utilizes a concatenation
of [|Y|, |E|,Yr,Yi] as input, where | ∗ |, r, and ∗i denote
magnitude, real, and imaginary spectrograms, respectively. In
contrast, cRM1 employs a concatenation of [Yr,Yi,Er,Ei]
as input.

Evidently, enhancing phase information results in better
SDR albeit with a slightly diminished PESQ value. This
outcome arises from the fact that, while complex-domain
estimation enhances phase information and mitigates mild
howling leakage in the enhanced signal, the process of training
becomes comparatively more challenging than magnitude-
only estimation. Through comparison, we observe that in-
cluding magnitude information in the inputs for complex-
domain estimation, as demonstrated by cRM2 achieves the
best performance.

C. Explorations regarding NeuralKalmanAHS

This section undertakes an ablation study of NeuralKa-
lmanAHS, specifically exploring the impact of the estimated
reference signal and covariance matrices on overall perfor-
mance.
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Kalman filter
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Fig. 8. Spectrograms of an utterance tested under G = 2: (a) target signal,
(b) Kalman filter, (c) Kalman filter with covariance matrices estimation,
(d) Kalman filter with reference signal estimation, (e) Proposed NeuralKa-
lmanAHS.

1) NeuralKalmanAHS with different configurations: We
contrast the proposed NeuralKalmanAHS with its variants
wherein we only utilize NN modules for covariance matrices
estimation (denoted as “Kalman filter + NNΨ1 + NNΨ2 ”)
and/or reference signal estimation (denoted as Kalman filter +
NNR ). Table III illustrates the results and the corresponding
spectrogram is provided in Fig. 12.

The results reveal that utilizing NN modules for either
covariance matrices or reference signal estimation results
in noteworthy performance improvement compared to the
original Kalman filter. Importantly, the improvement achieved
from estimating reference signal surpasses that of estimating
covariance matrices, underscoring its vital role in improving
overall performance. Jointly estimating the reference signal
and covariance matrices, the proposed NeuralKamanAHS
method, achieves further improvement

2) Benefits of using the learned reference signal: To high-
light the advantages of reference signal estimation, a compar-
ison is drawn between the reference signal estimation utilized
in the original Kalman filter and the estimated one obtained
from “Kalman filter + NNR”. The related signals are shown
in Fig. 9. Notably, the reference signal in the Kalman filter
corresponds to the prior processed output, resulting in the
same spectrogram as that of the Kalman filter’s output with a
one-frame delay. The estimated reference signal, employed in
our method, effectively eliminates a substantial portion of the
howling component. This, in turn, facilitates a refined refer-
ence signal for the Kalman filter’s weight updating, ultimately
contributing to an improved howling suppression performance.

D. HybridAHS vs. NeuralKalmanAHS

This section conducts a comparative analysis of the pro-
posed HybridAHS and NeuralKalmanAHS methods. While
both approaches integrate Kalman filters with neural networks,
they differ in how they address howling suppression, creating
a trade-off between the degree of howling suppression and the
distortions introduced to the enhanced speech.

Target

Kalman with 
estimated Ref.

Original Ref.

Estimated Ref.

(a)

(b)

(c)

(d)

Fig. 9. Spectrograms of an utterance tested under G = 2: (a) target signal,
(b) output of proposed method with only reference signal estimation, (c) the
estimated reference signal, and (d) the original reference signal of Kalman
filter.
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HybridAHS_v2 (cRM2)
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HybridAHS_v1

Kalman
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Fig. 10. Word error rate (WER) results of proposed methods evaluated in
severe howling scenario.

HybridAHS treats AHS as a speech enhancement task,
utilizing the neural network to directly estimate target speech
from microphone recordings. This approach is particularly
effective in interference attenuation, specifically feedback
suppression in the context of AHS. However, it inevitably
introduces artifacts to the enhanced signal, a common chal-
lenge associated with NN-based enhancement methods. On the
contrary, NeuralKalmanAHS adopts the strategy of traditional
AFC methods, achieving howling suppression through the
recursive subtraction of the estimated feedback signal from
the microphone recording. While this approach may show
limited suppression power, it has a gentler impact on the
target speech due to the subtraction process, often resulting
in superior speech quality.”

Results in Table I have highlighted the superior howl-
ing suppression achieved by HybridAHS, particularly Hybri-
dAHS v2 (cRM2), in comparison to NeuralKalmanAHS. To
substantiate our analysis concerning potential distortions in
the enhanced signal, we employ automatic speech recognition
(ASR) results as an additional measure. We employ a general-
purpose Mandarin speech recognition API [49] to evaluate the
ASR performance of the proposed methods. The word error
rate (WER) results are shown in Fig. 10. Lower WER values
correspond to improved recognition performance. It’s impor-
tant to emphasize that the primary focus of AHS is not ASR
performance enhancement. We opt for a low-power model to
address the computational burden and latency considerations
and tested under the severe howling scenario, which may
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Fig. 11. Acoustic howling suppression performance of proposed methods
with fixed RIR and fixed system delay at different G levels.

contribute to the WER results shown in Fig. 10 not reaching
the typical levels reported in ASR-related studies.

In our evaluation, NeuralKalmanAHS outperforms Hybri-
dAHS in terms of recognition performance, indicating less
distortion and better speech quality. Interestingly, “Hybri-
dAHS v2 (cRM2)”, which excels in howling suppression per-
formance in terms of SDR and PESQ, exhibits slightly lower
recognition performance when compared to “HybridAHS v2”.
One plausible explanation is that the complexity needed for
complex domain estimation is generally higher. Therefore, the
cRM2 version may experience slightly more distortions than
the RM version due to insufficient network complexity.

E. Stableness of recursive training

Utilizing recursive training effectively eliminates the mis-
match issue encountered in previous NN-based AHS studies.
The advantage of employing this training strategy extends
beyond improved howling suppression; it also enhances ro-
bustness. To illustrate this, we randomly select a subset of
50 test signals and increase the amplification from 1 to
3 for evaluation. The average SDR and PESQ values at
different amplification levels are plotted in Fig.11, where
HybridAHS v1 is trained using offline-generated signals, and
HybridAHS v2 and NeuralKalmanAHS use recursive training.
The results reveal that the offline model can suppress howling
at lower amplification gain levels, but its performance drops
significantly at G levels larger than 2.2. In contrast, the
other two methods utilizing recursive training exhibit robust
performance across these evaluation scenarios.

F. Robustness test of the proposed methods

In real-world applications, accounting for nonlinear distor-
tions and variations in the feedback path is crucial. This section
is dedicated to examining the robustness of the proposed
methods in addressing these challenges.

TABLE IV
ROBUSTNESS TEST AGAINST NONLINEAR (NL) DISTORTIONS AND RIR

CHANGE.

SDR ↑ NL distortions RIR change
HybridAHS v1 0.05 -1.83
HybridAHS v2 2.38 1.74
HybridAHS v2 (cRM2) 3.14 2.33
NeuralKalmanAHS 2.67 2.12
PESQ ↑ NL distortions RIR change
HybridAHS v1 1.97 2.18
HybridAHS v2 2.18 2.28
HybridAHS v2 (cRM2) 2.16 2.30
NeuralKalmanAHS 2.13 2.19

Target

No AHS

Kalman filter

HybridAHS_v1

HybridAHS_v2

HybridAHS_v2 (cRM2)

NeuralKalmanAHS

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 12. Spectrograms of an utterance tested using real-world recordings:
(a) target signal, (b) no AHS, (c) Kalman, (d) HybridAHS v1, (e) Hybri-
dAHS v2, (f) HybridAHS v2 (cRM2), and (g) NeuralKalmanAHS.

Initially, we explore the performance of the proposed meth-
ods in the presence of nonlinear (NL) distortions. Previous
studies [31], [32] have demonstrated the robustness of deep
learning-based AHS methods to nonlinear distortions. Fol-
lowing a similar setup [32], [50], we retrain the proposed
methods to accommodate the nonlinear distortions stemming
from inherent limitations in components like power amplifiers
and loudspeakers To simulate the characteristics of a power
amplifier, we apply a hard clipping operation [51] to the
loudspeaker signal x(t):

xclip(t) =

−xmax x(t) < −xmax

x(t) |x(t)| ≤ xmax

xmax x(t) > xmax

(19)

where xmax is set to 0.8 of the maximum amplitude of
|x(t)|. Subsequently, a memoryless sigmoidal nonlinearity
[52] is applied to the clipped signal to simulate asymmetric
loudspeaker distortion:

xNL(t) = γ
(

2
1+exp(−a·b(t)) − 1

)
(20)

where b(t) = b1 × xclip(t) − b2 × x2
clip(t). To address the

variability in nonlinearities, we randomly select b1 from [1, 2]
and b2 from [0.1, 0.6] for each utterance. The sigmoid gain γ
is randomly selected from [1, 4], while the sigmoid slope a is
set to a random value within [1, 5] if b(t) > 0, and [0.1, 0.6]
otherwise.

Secondly, we examine the impact of feedback path changes
on the efficacy of the proposed howling suppression methods.
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During the evaluation, two RIRs are generated for each utter-
ance, denoted as RIR 1 and RIR 2, representing the feedback
path. Subsequently, an abrupt change is introduced in the
feedback path by transitioning from RIR 1 to RIR 2 at the
midpoint of a test signal.

We conduct two separate evaluations to assess performance
under different conditions: one for examining the impact of
nonlinear distortions and the other for evaluating feedback path
changes. Each evaluation includes 100 utterances, with the
system delay randomly assigned within the range of 0.15 to
0.25 seconds, and the value of amplification gain randomly
selected between 1 and 3. The evaluation outcomes, as detailed
in Table IV, indicate that nonlinear distortions lead to a slight
reduction in the PESQ value, while changes in the feedback
path have a minor impact on the SDR results. Nonetheless,
the overall outcomes still demonstrate the robustness of the
proposed method against NL distortions and feedback path
changes.

Additionally, we assess the performance of the proposed
method using real-world recordings. The spectrograms of a
test utterance under a severe howling scenario are depicted in
Fig. 12, and the corresponding sound files are available on
our demo page. The figure illustrates that without AHS or
with a traditional Kalman filter, the outputs contain severe
acoustic howling. In general, the results suggest that con-
sidering variations in system delay, amplification gain, room
sizes, loudspeaker-microphone positions, and their respective
RIRs, as described in Sect. V-A, enables the models trained on
simulated signals to demonstrate stability and effectiveness in
handling real recordings. Specifically, with the offline-trained
HybridAHS method, HybridAHS v1, the acoustic howling is
suppressed to some extent, but there is still residual howling
in the output under severe howling scenarios. While the
recursively trained methods exhibit robust howling suppression
with real-world recordings.

VII. CONCLUSION

In this study, we introduce two distinctive approaches, Hy-
bridAHS and NeuralKalmanAHS, which unite the traditional
Kalman filter with neural networks for the purpose of acoustic
howling suppression. To tackle the mismatch problem that
existed in previous NN-based AHS methods, we introduce an
innovative training framework that involves recursive training,
rooted in an examination of the underlying acoustic howling
formation process. The multifaceted integration and the em-
ployment of a recursive training strategy address the mismatch
issue effectively, leading to substantial enhancements in howl-
ing suppression capabilities.

Our exploration encompasses various implementation ap-
proaches of these methods, which we systematically com-
pared to provide a thorough assessment. Experimental results
illustrate the power that arises from combining the Kalman
filter with deep learning methodologies. The proposed methods
exhibit superior performance and present valuable options for
users seeking effective solutions in real-world audio commu-
nication systems.
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