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Abstract

Traditional multi-channel active noise control (MCANC) is based on adaptive filtering and usually uses a separate control unit for
each channel. This paper introduces a deep learning based approach for multi-channel active noise control (ANC). The proposed
approach, called deep MCANC, encodes optimal control parameters corresponding to different noises and environments, and jointly
computes the multiple canceling signals to cancel or attenuate the primary noises captured at error microphones. A convolutional
recurrent network (CRN) is employed for complex spectral mapping where the summated power of error signals is used as the
loss function for CRN training. Deep MCANC is a fixed-parameter ANC approach and large-scale multi-condition training is
employed to achieve robustness against a variety of noises. We explore the performance of deep MCANC with different setups and
investigate the impact of factors such as the number of loudspeakers and microphones, and the position of a secondary source, on
ANC performance. Experimental results show that deep MCANC is effective for wideband noise reduction and generalizes well to
untrained noises. Moreover, the proposed approach is robust against variations in reference signals and works well in the presence
of nonlinear distortions.
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1. Introduction

Active noise control (ANC) is a noise cancellation methodol-
ogy based on the principle of destructive superposition of sound
waves; more specifically, an unwanted primary noise is can-
celed by generating an anti-noise with the same amplitude but
opposite phase (Kuo & Morgan, 1996). It has attracted increas-
ing attention over the past decades, and has been used in indus-
trial applications such as headphones (Kuo et al., 2006), auto-
mobiles (Cheer & Elliott, 2015), airplanes (Wilby, 1996), and
medical equipment (Kajikawa et al., 2012). A recent trend ex-
tends the control region of ANC to achieve noise cancellation at
multiple spatial points or within a spatial zone (PAWEŁCZYK,
2008; Kajikawa et al., 2012; Murao et al., 2017). However, the
performance of single-channel ANC is limited when it comes
to noise control in three-dimensional space (Elliott et al., 1987).
Multi-channel ANC (MCANC) that employs multiple micro-
phones and loudspeakers has been introduced to achieve ANC
in such scenarios.

A general MCANC system with I reference microphones,
J canceling loudspeakers, and K error microphones is shown
in Fig. 1. The MCANC system takes the reference signals
and error signals, recorded by reference microphones and er-
ror microphones, respectively, as inputs to update the weights
of controllers so that the canceling signals generated can su-
perpose with the primary noises at error microphones. Con-
ventionally, MCANC is accomplished by optimizing controller
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weights through adaptive algorithms so that the sum of the error
signals is minimized (Murao et al., 2017; Liu et al., 2009; Patel
& George, 2020). Adaptive filters such as filtered-x least mean
square (FxLMS), fast affine projection, mixed-error approach,
and their variable step-size versions, are commonly used ANC
algorithms and have been extended to MCANC modules (Kuo
& Morgan, 1999; Elliott et al., 1987; Liu et al., 2009; Bouchard,
2003; Murao et al., 2017; Patel & George, 2020).

Active noise control systems can be developed using adap-
tive as well as fixed-parameter (also known as fixed-coefficient
or fixed-filter) techniques (Lam et al., 2021). Standard adap-
tive MCANC algorithms estimate the J × K secondary paths
(acoustic paths from loudspeakers to error microphones) dur-
ing an initial stage and use the estimated secondary paths to
update controllers. For decentralized MCANC systems, each
of the possible feedforward channels requires a separate adap-
tive filter, resulting in I× J controllers (Elliott et al., 1987; Patel
& George, 2020). To achieve noise control over multiple points
or within a spatial zone, more channels need to be added to
the system and the computational complexity of MCANC al-
gorithms grows accordingly (Patel & George, 2020; Shi et al.,
2020). This factor acts as a bottleneck in the real-time imple-
mentation of MCANC and numerous efforts have been made to
alleviate the complexity (Bouchard, 2003; Murao et al., 2017;
Lorente et al., 2015). However, the reduction of computational
complexity usually comes at the expense of noise attenuation
performance (Shi et al., 2021). In addition, the adaptive nature
of these algorithms poses an inherent risk of update divergence
in the presence of external disturbances or errors in secondary
path modeling (Lam et al., 2021; Krukowicz, 2013; Shi et al.,
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Figure 1: Diagram of a general I× J×K multi-channel active noise control sys-
tem that consists of I reference microphones, J canceling loudspeakers, and K
error microphones. Symbol pk denotes the primary path from the noise source
to the kth error microphone, and s jk denotes the secondary path from the jth

canceling loudspeaker to the kth error microphone.

2017). Moreover, the slow convergence of the adaptive algo-
rithms results in a limited reduction of dynamic noise, and noise
reduction is not perceived immediately (Shi et al., 2022).

Fixed-parameter noise control methods utilize pre-trained
control filters to attenuate noise instantaneously. They have
become an effective alternative to adaptive ANC, as exempli-
fied by noise-canceling headphones. Different from adaptive
methods, fixed filters determine their coefficients during of-
fline training and deploy these carefully tuned coefficients in
actual operations (Shi et al., 2020, 2018). Tanaka et al. im-
plement an MCANC system with fixed noise control filters to
reduce computational complexity (Tanaka et al., 2014). Shi et
al. propose a selective fixed-filter active noise control (SFANC)
method which selects a pre-trained control filter to attenuate a
detected primary noise rapidly (Shi et al., 2020). Later, a modi-
fied version of SFANC employs a convolutional neural network
(Shi et al., 2022). Fixed-parameter ANC methods are feasi-
ble when the application environment does not change rapidly.
However, such approaches are usually optimized for a limited
range of noise types, resulting in limited generalization perfor-
mance (Shi et al., 2020).

Many studies assume linear ANC systems. However, nonlin-
ear effects caused by loudspeakers and acoustic paths are com-
monplace in practical ANC systems (Kukde et al., 2020), such
as the gain saturation effect of loudspeakers (Kuo et al., 2004).
It has been shown that a small nonlinearity in a secondary path
can have a significant impact on the behavior of linear adap-
tive filters (Costa et al., 2002). Having multiple loudspeakers
could therefore adversely impact the overall performance of an
MCANC system further.

Deep neural networks have been widely used in recent years
to address speech and audio processing tasks, including speaker
recognition (Bai & Zhang, 2021), speech separation (Chen &
Zhang, 2021; Xian et al., 2021), and noise-robust voice conver-
sion (Du et al., 2022). In a previous study, we first formulated
ANC as a supervised learning problem and proposed a deep
learning approach, called deep ANC, to address the nonlinear
ANC task (Zhang & Wang, 2021a). It has been shown that
deep ANC is effective for wideband noise reduction and gen-

eralizes well to different noises. Later, Shi et al. proposed a
deep learning based SFANC method which employs a convo-
lutional neural network to classify noise types and identify the
most suitable fixed control filter for different incoming noise
(Shi et al., 2022). More recently, Chen et al. utilized deep learn-
ing to address the nonlinearity of the secondary path in an ANC
system and proposed a secondary path-decoupled method using
two pre-trained convolutional recurrent networks (Chen et al.,
2021). Deep learning methods achieve active noise control by
training a deep neural network (DNN) offline, and can therefore
be viewed as fixed-parameter ANC. Compared to conventional
fixed filter methods, deep ANC is capable of attaining nonlinear
active noise reduction for a variety of noises through large-scale
training.

This study extends deep ANC to the multi-channel domain.
The resulting approach, called deep MCANC, is investigated
for active noise control at multiple spatial points (multi-point
ANC) and within a spatial zone (generating a quiet zone).
Rather than estimating multiple secondary paths and adaptive
controllers individually, the proposed method trains a convo-
lutional recurrent network (CRN) (Tan & Wang, 2019) to en-
code the optimal control parameters of an MCANC controller
and output multiple canceling signals simultaneously so that the
corresponding anti-noises match the primary noises at desired
locations. As ANC is inherently sensitive to both the magnitude
and phase of an anti-noise, we use complex spectral mapping to
estimate both magnitude and phase responses of MCANC out-
puts (Tan & Wang, 2019; Williamson et al., 2016). The perfor-
mance of MCANC is impacted by factors such as the number of
loudspeakers and microphones, and the position of a secondary
source. We systematically investigate the effects of these fac-
tors on overall performance, in order to guide design choices for
MCANC systems. Furthermore, evaluations in the presence of
nonlinear distortions and variations in reference signals are car-
ried out to demonstrate the robustness of the proposed method.

Compared to a preliminary version (Zhang & Wang, 2021b),
this paper conducts more extensive evaluations and investigates
the performance of deep MCANC under different experimental
setups. Moreover, we explore the influence of various factors
on ANC performance and assess the robustness of the proposed
method against variations in reference signals. We also pro-
vide new evaluation results on recorded noise signals in realis-
tic environments and discuss the generalization ability of deep
MCANC.

The remainder of this paper is organized as follows. Section
II describes the deep MCANC approach. Section III describes
experiment settings. Evaluation and comparison results are pre-
sented in Section IV. Section V provides further discussions and
concludes this paper.

2. Deep MCANC

2.1. Signal model
A general I × J × K MCANC system is shown in Fig. 1.

The primary path pk(n) and secondary path s jk(n) correspond
to the acoustic responses from a noise source and the jth can-
celing loudspeaker, respectively, to the kth error microphone,
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where j = 1, 2, · · · , J and k = 1, 2, · · · ,K. The reference
noises {x1, x2, · · · , xI} sensed by reference microphones are fed
to multi-channel active noise controllers to get the canceling
signals {y1, y2, · · · , yJ}. Assuming w ji(n) is the active noise
controller placed between the ith reference microphone and the
jth canceling loudspeaker, the canceling signal at the jth loud-
speaker is obtained as

y j(n) =

I∑
i=1

wT
ji(n)xi(n) (1)

where n is the time index, and the superscript T indicates trans-
pose. These canceling signals are then passed through the can-
celing loudspeakers and the secondary paths to generate anti-
noises in order to cancel or attenuate primary noises at the er-
ror microphones. The anti-noise generated by the jth canceling
loudspeaker and received by the kth error microphone can be
written as

a jk(n) = s jk(n) ∗ fLS{y j(n)} (2)

where fLS{·} denotes the function of loudspeaker, and ∗ denotes
convolution.

The error microphones are placed over desired locations to
measure the residual noise components, and the error signal
sensed by the kth error microphone is given by

ek(n) = dk(n) −
J∑

j=1

a jk(n) (3)

where

dk(n) = pk(n) ∗ x(n) (4)

is the primary noise received at the kth error microphone, and
x(n) denotes the source noise. Note that the anti-noises are sub-
tracted in (3) to achieve noise cancellation.

2.2. Deep learning for MCANC

The proposed method uses deep learning for MCANC. It
trains a DNN with large-scale multi-condition training to di-
rectly approximate an optimal MCANC controller to minimize
the total energy of all the error microphones under different sit-
uations. The diagram of deep MCANC is given in Fig. 2. Our
goal is to jointly estimate J canceling signals from the I ref-
erence signals so that the corresponding anti-noises cancel the
primary noises at the K error microphones. In the proposed
method, we use reference signals (reference noises) as inputs
and set the ideal anti-noises as the training targets. To achieve
complete noise cancellation at desired locations, the ideal anti-
noises should be the same as the primary noises. During train-
ing, the outputs of deep MCANC (canceling signals) are treated
as “intermediate products” and the anti-noises are generated by
passing these products through the corresponding loudspeakers
and secondary paths. The loss function calculated from all the
error signals is then used to guide model training.
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Figure 2: Diagram of (a) deep MCANC approach, and (b) CRN based deep
MCANC. P and S denoted primary and secondary paths. Superscripts (r) and
(i) denote real and imaginary parts of signals, respectively.

2.3. Features and training targets
The performance of ANC is inherently sensitive to both mag-

nitude and phase of anti-noises. Our MCANC makes use of
the real and imaginary spectrograms of reference signals as in-
puts to estimate the real and imaginary spectrograms of cancel-
ing signals, as shown in Fig. 2(b). A reference signal xi(n) is
sampled at 16 kHz, and windowed into 20-ms frames with 10-
ms frame shift. Then a 320-point short time Fourier transform
(STFT) is applied to each time frame to produce the real and
imaginary spectrograms of xi(n), which are denoted as X(r)

i (t, f )
and X(i)

i (t, f ), respectively, within a T-F unit at time t and fre-
quency f , superscripts (r) and (i) denote real and imaginary
parts of signals.

To attenuate the primary noises at the desired locations, we
set the ideal anti-noises, i.e., the primary noises, as the train-
ing targets. The deep MCANC model is trained to output the
real and imaginary spectrograms of the J canceling signals,
Y (r)

j (m, c) and Y (i)
j (m, c), j = 1, 2, · · · , J, simultaneously. These

outputs are then fed to the inverse Fourier transform to derive
waveform signals y j(t). The anti-noises, which can be regarded
as estimates of the training targets, are generated by passing the
canceling signals through the corresponding loudspeakers and
secondary paths.

2.4. Loss function and learning machine
The objective of deep MCANC is to generate canceling sig-

nals that minimize the error signals received at all error micro-
phones. Therefore, the loss function is calculated as the sum of
the K error signals:

Loss =

∑K
k=1
∑L

n=1 e2
k(n)

KL
(5)

where ek(n) is defined as (3), and L is the length of error signals.
We employ CRN for model training. The CRN has an

encoder-decoder architecture, where the encoder and decoder
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Table 1: Network details of the CRN architecture, where T denotes the number
of time frames in a spectrogram.

layer name input size hyperparameters output size
conv2d 1 2I × T × 161 1 × 3, (1, 2), 16 16 × T × 80
conv2d 2 16 × T × 80 1 × 3, (1, 2), 32 32 × T × 39
conv2d 3 32 × T × 39 1 × 3, (1, 2), 64 64 × T × 19
conv2d 4 64 × T × 19 1 × 3, (1, 2), 128 128 × T × 9
conv2d 5 128 × T × 4 1 × 3, (1, 2), 256 256 × T × 4
reshape 1 256 × T × 4 - T × 1024

grouped lstm 1 T × 1024 1024 T × 1024
grouped lstm 2 T × 1024 1024 T × 1024

reshape 2 T × 1024 - 256 × T × 4
deconv2d 5 512 × T × 4 1 × 3, (1, 2), 128 128 × T × 9
deconv2d 4 256 × T × 9 1 × 3, (1, 2), 64 64 × T × 19
deconv2d 3 128 × T × 19 1 × 3, (1, 2), 32 32 × T × 39
deconv2d 2 64 × T × 39 1 × 3, (1, 2), 16 16 × T × 80
deconv2d 1 32 × T × 80 1 × 3, (1, 2), 2J 2J × T × 161

comprise five convolutional layers and five deconvolutional lay-
ers, respectively, as shown in Fig. 2(b). A two-layer recurrent
network with long short-term memory (LSTM) is inserted be-
tween them to account for temporal dynamics of audio signals,
and a group strategy is used in LSTM (Gao et al., 2018) with the
group number set to two. In our implementation, the encoder is
a stack of convolutional layers and pooling layers, which serves
to extract high-level features from the raw input. The decoder
has the same structure as the encoder but in the reverse order
and it ensures that the output of the decoder has the same shape
as the input.

The detailed description of the CRN architecture is provided
in Table 1. Layer kind and position are shown under layer
name. The input and output size of each layer are marked as
FeatureMaps × TimeS teps × FreqChannels. The hyperpa-
rameters are specified in the (kernelS ize, strides, outChannels)
format. We apply zero-padding to the time direction for all the
convolutions and the deconvolutions. The number of feature
maps in each decoder layer is doubled due to skip connections.
Batch normalization is adopted right after each convolution (or
deconvolution) and before activation. Exponential linear units
(ELUs) are used as the activation function in all convolutional
and deconvolutional layers except the output layer. As shown
in Fig. 2(b), we utilize skip connections, which feed the output
of each encoder layer to the corresponding decoder layer, to im-
prove the flow of information and gradients through the CRN.
The number of input and output channels are set to 2I and 2J,
respectively.

2.5. Deep MCANC for quiet zone
Besides noise attenuation at multiple spatial points (locations

of error microphones), deep MCANC can be trained to achieve
ANC within a spatial zone using one or multiple canceling
loudspeakers and multi error microphones. The general strat-
egy is illustrated in Fig. 3. The goal is to attenuate noise in a
target region. To achieve this, we train the deep MCANC con-
troller on a variety of room impulse responses (RIRs) sampled
within a spatial zone during training in an RIR-independent
way. To be specific, we simulate the quiet zone as a sphere with

𝑟

Deep MCANCNoise Source

Figure 3: Deep MCANC for noise attenuation within a sphere with a radius of
r to generate a quiet zone.
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Figure 4: Illustration of the MCANC experimental setup.

a radius of r and randomly select K points within the sphere
as the locations of the error microphones. We call these error
microphones “virtual error microphones” since they are simu-
lated and only used during model training. Once the model is
trained, these virtual error microphones are no longer used dur-
ing the inference stage.

In order to achieve stronger noise attenuation within the quiet
zone, more virtual error microphones are needed during train-
ing stage to sample as many positions within the zone as possi-
ble. One idea for efficient model training is to calculate the loss
function each time from a randomly sampled subset of the K
virtual error microphones (Zhang & Wang, 2021b). The model
trained this way saves the amount of computation while still
covering all K positions within the quiet zone.

3. Experimental setup

3.1. Experimental Settings

To train a noise-independent model, we expose the MCANC
model to a large variety of noisy environments in the train-
ing stage (Chen et al., 2016) and use 10000 non-speech
environmental sounds (noises) from a sound-effect library
(http://www.sound-ideas.com) to create the training set. Bab-
ble noise, factory noise, operating room noise (denoted as “op-
room”), and speech-shaped noise (denoted as “SSN”) from
the NOISEX-92 dataset (Varga & Steeneken, 1993), as well
as recorded noises in the DEMAND dataset (Thiemann et al.,
2013), are used for testing. All the noises are wideband without
any low-pass filtering, i.e. they have significant energy across
the entire frequency range. The test noises are unseen during
training, and hence can evaluate the generalization ability of
the proposed method.
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The physical structure of an ANC system is usually modeled
as a rectangular enclosure and many studies have shown the
effectiveness of ANC systems for noise canceling in enclosed
rooms (Parkins et al., 2000; Cheer, 2012; Samarasinghe et al.,
2016). In this study, we simulate a rectangular enclosure of
size 3 m × 4 m × 2 m (width × length × height) and use the
image method (Allen & Berkley, 1979) to generate RIRs for
the primary and secondary paths of an MCANC system. The
MCANC system with three reference microphones, three can-
celing loudspeakers, and four error microphones, is shown in
Fig. 4 for the multi-point ANC scenario. Our evaluation con-
siders a single noise source located at the position (1.5, 1, 1) m
and is recorded by three reference microphones located at (1.5,
1, 1) m, (1.4, 1, 1) m, (1.6, 1, 1) m. In this scenario we can
equate the noise and the first reference microphone recording.
The three canceling loudspeakers are located at (1.5, 2.5, 1) m,
(1.6, 2.5, 1) m, (1.4, 2.5, 1) m, and the four error microphones
at (1.5, 3, 1) m, (1.5, 3, 1.1) m, (1.4, 3, 1) m, (1.4, 3, 0.9) m. In
the following experiments, an I × J × K ANC system refers to
the MCANC setup that consists of the first I (1 ≤ I ≤ 3) refer-
ence microphones, the first J (1 ≤ J ≤ 3) loudspeakers and the
first K (1 ≤ K ≤ 4) error microphones described here. For the
quiet zone scenario, we use the same J (1 ≤ J ≤ 3) canceling
loudspeakers and set the center of the quiet zone at the position
(1.5, 3, 1) m. Five reverberation times (T60s): 0.15 s, 0.175 s,
0.2 s, 0.225 s, and 0.25 s, are used for generating training RIRs.
With each T60, we generate multiple RIRs for all the primary
and secondary paths in the MCANC system. For testing, we
use RIRs with reverberation time 0.2 s as the default test RIRs,
and the RIRs generated with untrained T60s are used to test the
generalization ability of deep MCANC.

We create 20000 training signals and 100 test signals. Each
noise signal is created by randomly cutting a 3-second signal
from the 10000 noise signals. The primary noise at an error mi-
crophone is generated by convolving the source noise with the
corresponding primary path (see Fig. 1). The estimated anti-
noises are generated by passing the canceling signals through a
loudspeaker function and then RIRs for the corresponding sec-
ondary paths. The CRN model is trained using the AMSGrad
optimizer (Reddi et al., 2019) with a learning rate of 0.001 for
30 epochs.

3.2. Evaluation metric

We use normalized mean squared error (NMSE) (Das &
Panda, 2004; Tan & Jiang, 2009) to evaluate noise attenuation
performance of the proposed method. NMSE is a commonly
used metric for ANC evaluations and it is defined as

NMSE = 10 log10

∑L
t=1 e2(t)∑L
t=1 d2(t)

(6)

where L is the length of the signal. NMSE values are typically
below zero, with a lower value indicating better noise attenua-
tion.

Table 2: Average NMSE (dB) of ANC systems under different setups and with
untrained noises.

1 × 1 × 1 1 × 2 × 1 1 × 2 × 2

Babble
FxLMS -6.95 (0.3) -9.12 (0.3) -7.60 (0.06) -7.94 (0.06)
PMl-FxLMS -7.02 (0.3) -9.40 (0.3) -7.85 (0.06) -8.17 (0.06)
Deep ANC -12.08 -16.27 -12.93 -13.34

Factory
FxLMS -6.62 (0.4) -9.06 (0.3) -7.51 (0.07) -8.11 (0.07)
PMl-FxLMS -6.67 (0.4) -9.29 (0.3) -7.81 (0.07) -8.38 (0.07)
Deep ANC -11.71 -14.73 -12.26 -12.39

Oproom
FxLMS -6.93 (0.3) -7.69 (0.2) -7.15 (0.08) -7.24 (0.08)
PMl-FxLMS -7.18 (0.3) -8.38 (0.2) -7.50 (0.08) -7.60 (0.08)
Deep ANC -11.14 -14.72 -10.84 -11.95

SSN
FxLMS -6.45 (0.2) -9.51 (0.2) -8.48 (0.06) -9.48 (0.06)
PMl-FxLMS -6.49 (0.2) -10.35 (0.2) -9.00 (0.06) -9.87 (0.06)
Deep ANC -12.53 -17.10 -12.26 -12.39

0 1 2 3 4 5 6 7 8
Frequency (kHz)

-110

-100

-90

-80

-70

Po
w

er
 S

pe
ct

ru
m

 (d
B

)

no ANC
1  1  1
1  2  1

0 1 2 3 4 5 6 7 8
Frequency (kHz)

-110

-100

-90

-80

-70

Po
w

er
 S

pe
ct

ru
m

 (d
B

)

no ANC
1  1  1
1  2  1

(a)

(b)

Figure 5: Power spectrum of signals obtained with SSN noise under 1 × 1 × 1
and 1 × 2 × 1 setups using (a) PMl-FxLMS, and (b) proposed method.
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Figure 6: Average NMSE for 1 × 2 × 1 deep MCANC using untrained RIRs
with different T60s. The NMSE results for the trained T60 of 0.2 s are included
for comparison purposes.

4. Experimental results and Comparisons

4.1. Deep MCANC for multi-point ANC
We first evaluate the performance of the proposed method

under 1 × 1 × 1, 1 × 2 × 1, and 1 × 2 × 2 ANC setups, where
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Figure 7: Spectrograms of test results for different noises. The first, second and third row of each panel illustrates the output of no ANC, deep single-channel ANC,
and and deep MCANC (1 × 2 × 1), respectively.

Table 3: Average NMSE (dB) of deep MCANC using different numbers of
reference microphones.

Babble Factory Oproom SSN
1 × 1 × 1 -12.08 -11.71 -11.14 -12.53
2 × 1 × 1 -12.57 -12.39 -11.51 -13.29
3 × 1 × 1 -12.93 -12.59 -11.77 -13.61

the single-channel ANC (1 × 1 × 1) can be seen as a spe-
cial case of MCANC. In the evaluations of this subsection and
Sections IV.B-D, we use a linear loudspeaker function in (2),
and nonlinear functions will be considered in Sect. IV.E. Two
traditional ANC algorithms, FxLMS and post-masking-based
FxLMS (PMl-FxLMS) are utilized for comparison. FxLMS is
the most commonly used ANC algorithm and PMl-FxLMS is
its modified version for faster convergence and better noise at-
tenuation (Shi et al., 2019). The step sizes of FxLMS and PMl-
FxLMS are chosen for different noises according to the criteria
given in (Shi et al., 2019) to ensure stable updating and good
noise attenuation. The length of the error signal memory in
PMl-FxLMS is set to 10, which is large enough to achieve good
performance of ANC. The proposed and comparison methods
are tested with four types of untrained noises and the average
NMSE of test signals is given in Table 2. The NMSE values of
the traditional ANC algorithms correspond to the final steady
state results, and the associated step sizes are given inside the
parentheses. For the MCANC setup with two error micro-
phones (1 × 2 × 2), we give NMSE results at both error micro-
phones in two separate columns in the table. It can be seen from

this table that the proposed deep MCANC consistently outper-
forms the other methods under different setups and generalizes
well to untrained noises.

We provide power spectrum curves in Fig. 5 for SNN for
further comparisons. Power spectrum measures signal power
as a function of frequency, and illustrates relative noise atten-
uation achieved at various frequencies. The curves presented
in the figure show that deep MCANC outperforms the tradi-
tional method of PMI-FxLMS, and using more canceling loud-
speakers improves the noise attenuation performance. More-
over, the proposed method is effective for ANC at low- and
high-frequencies, while the comparison method is only effec-
tive at low frequencies. Traditional ANC is known to be re-
stricted to low frequencies due to factors such as convergence
and latency (Kuo & Morgan, 1999; Samarasinghe et al., 2016),
and narrow-band or low-pass filtered noises are frequently uti-
lized for performance evaluation. We use wideband noises in
this study for evaluation, which partly explains why the amount
of noise attenuation for the comparison methods is lower in Ta-
ble 2 than typically reported in the literature.

Fig. 6 shows the average NMSE of deep MCANC when
tested with RIRs generated using different T60 values (both
trained and untrained). The NMSE results for the trained T60 of
0.2 s are included as reference. It is seen that the performance
of deep MCANC generalizes well to untrained RIRs.

Table 3 provides the results of deep MCANC using different
numbers of reference microphones. Using more reference mi-
crophones helps to capture the primary noise better and leads
to a little better noise attenuation performance. As our evalua-
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Table 4: Average NMSE (dB) of deep MCANC for multi-point noise cancellation using different numbers of canceling loudspeakers and error microphones.

Babble Factory Oproom SSN

1 × 1 × 1 1 × 2 × 1 1 × 3 × 1 1 × 1 × 1 1 × 2 × 1 1 × 3 × 1 1 × 1 × 1 1 × 2 × 1 1 × 3 × 1 1 × 1 × 1 1 × 2 × 1 1 × 3 × 1
-12.08 -16.27 -15.52 -11.71 -14.73 -14.20 -11.14 -14.72 -13.94 -12.53 -17.10 -16.64

1 × 1 × 2 1 × 2 × 2 1 × 3 × 2 1 × 1 × 2 1 × 2 × 2 1 × 3 × 2 1 × 1 × 2 1 × 2 × 2 1 × 3 × 2 1 × 1 × 2 1 × 2 × 2 1 × 3 × 2
-8.41 -12.93 -14.55 -7.94 -12.26 -13.53 -7.47 -10.84 -12.49 -8.19 -12.58 -13.11
-9.27 -13.34 -13.78 -8.70 -12.39 -12.55 -8.27 -11.95 -12.48 -9.66 -13.56 -14.45

1 × 1 × 3 1 × 2 × 3 1 × 3 × 3 1 × 1 × 3 1 × 2 × 3 1 × 3 × 3 1 × 1 × 3 1 × 2 × 3 1 × 3 × 3 1 × 1 × 3 1 × 2 × 3 1 × 3 × 3
-8.17 -8.36 -12.62 -7.65 -8.21 -12.00 -6.99 -7.54 -10.43 -8.08 -8.42 -12.83
-8.73 -9.45 -11.69 -8.22 -8.99 -10.93 -7.88 -8.38 -10.88 -8.47 -10.24 -11.63
-8.16 -9.72 -13.34 -7.57 -9.13 -12.11 -7.31 -8.92 -11.89 -8.74 -9.90 -14.09

1 × 1 × 4 1 × 2 × 4 1 × 3 × 4 1 × 1 × 4 1 × 2 × 4 1 × 3 × 4 1 × 1 × 4 1 × 2 × 4 1 × 3 × 4 1 × 1 × 4 1 × 2 × 4 1 × 3 × 4
-7.13 -9.28 -11.50 -6.59 -9.05 -10.70 -6.08 -8.06 -9.09 -6.89 -9.13 -11.65
-9.26 -9.89 -11.41 -8.69 -9.38 -10.63 -8.19 -8.87 -9.76 -9.36 -9.93 -11.92
-8.18 -9.80 -11.97 -7.56 -8.91 -10.89 -6.96 -8.56 -9.93 -8.62 -9.70 -11.87
-8.50 -9.49 -11.49 -7.42 -8.59 -10.07 -7.44 -8.22 -9.83 -7.23 -8.34 -10.69

tions consider point-source noises, which are relatively easy to
capture, MCANC with a single reference microphone will be
taken as the default setting in the following experiments.

The spectrograms of the proposed method tested using dif-
ferent noises are shown in Fig. 7, where the first row of each
panel shows the spectrogram of primary noise (no ANC), and
the second and third rows show the residual noises (error sig-
nals) obtained using 1× 1× 1 and 1× 2× 1 setups, respectively.
It can be seen that the proposed method is capable of achieving
wideband noise attenuation. Using two canceling loudspeak-
ers helps to improve the noise attenuation performance over the
single loudspeaker setup.

To further explore the impact of the number of canceling
loudspeakers and error microphones on multi-point ANC per-
formance, we evaluate the performance of 1 × J × K MCANC
setups with different combinations of J and K values, where J
varies from 1 to 3 and K from 1 to 4. The results tested using
different noises are shown in Table 4. For an MCANC sys-
tem with K error microphones, we measure the average NMSE
obtained at each microphone and provide all K values in dif-
ferent rows of the table. These results show that, with a fixed
number of error microphones, noise attenuation performance
usually improves as the number of canceling loudspeakers in-
creases.

4.2. Deep MCANC for quiet zone

This subsection evaluates the performance of deep MCANC
for generating a quiet zone. Conventional ANC methods re-
quire multiple canceling loudspeakers and error microphones
to generate a quiet zone, and the error microphones need to
be placed in the target zone, or near the zone with the help of
remote sensing techniques (Kajikawa et al., 2012). The pro-
posed method can achieve a quiet zone using a single canceling
loudspeaker and does not need to have any physical error mi-
crophones during the inference stage (see also (Zhang & Wang,
2021a)). In this study, we simulate the quiet zone as a sphere
and set its radius to r = 5 cm; such a zone size is appropri-
ate, for example, for a driver’s ears inside a vehicle. For test-
ing, besides the center of the quiet zone (r = 0 cm), the per-
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Figure 8: Average NMSE of deep MCANC for generating quiet zone in babble
noise using a 1×1×K setup with different numbers of virtual error microphones
(K), where r (cm) is the distance of a test position to the center of the zone. The
value shown below each cluster is the average NMSE within the quiet zone.

Table 5: Average NMSE (dB) of deep MCANC for generating quiet zone using
different numbers of canceling loudspeakers.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 Ave

Babble
J=1 -10.83 -10.72 -10.52 -9.77 -9.48 -7.55 -9.81
J=2 -14.15 -14.16 -13.27 -11.74 -11.53 -9.02 -12.31
J=3 -15.53 -15.59 -15.51 -14.37 -13.69 -11.59 -14.38

Factory
J=1 -9.89 -9.83 -9.54 -8.84 -8.42 -6.52 -8.84
J=2 -12.86 -12.87 -12.15 -10.79 -10.60 -8.25 -11.25
J=3 -14.09 -14.15 -14.08 -13.17 -12.59 -10.87 -13.16

Oproom
J=1 -9.20 -8.92 -8.49 -8.38 -7.92 -7.04 -8.33
J=2 -11.78 -11.04 -10.50 -10.45 -9.62 -8.29 -10.28
J=3 -12.29 -11.50 -11.29 -10.66 -10.65 -9.40 -10.96

SSN
J=1 -10.04 -9.99 -9.67 -8.88 -8.37 -6.43 -8.90
J=2 -14.63 -14.55 -13.51 -11.55 -11.27 -8.58 -12.35
J=3 -16.45 -16.19 -16.40 -15.10 -14.37 -11.90 -15.07

formance is also evaluated at locations on spheres of different
radii (r = 1, 2, 3, 4, 5 cm). Specifically, for r = d, we place an
error microphone at 10 random positions on the sphere of ra-
dius d cm and use the corresponding RIRs to create test signals.
Unless otherwise stated, the default number of virtual error mi-
crophones is set to K = 100.

We start with assessing the impact of the number of virtual
error microphones on the quiet zone performance. A 1 × 1 × K
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Table 6: Average NMSE (dB) of deep MCANC for generating quiet zone with
different canceling loudspeaker positions.

Near Medium Far

1 × 1 × 100

r = 0 -15.78 -11.33 -12.56
r = 1 -15.16 -11.56 -12.52
r = 2 -12.83 -10.06 -11.98
r = 3 -11.38 -9.21 -11.28
r = 4 -10.04 -8.77 -10.88
r = 5 -8.61 -8.00 -10.01

Average -12.30 -9.75 -11.54
Variance 6.40 1.86 0.95

MCANC system with a single canceling loudspeaker and K vir-
tual error microphones is used for generating the quiet zone,
where K varies from 1 to 200. The results are provided in Fig. 8
with the average value for each K shown below corresponding
bars. Note that the case with K = 1, which is the single-channel
ANC case, is trained by putting one error microphone at the
center of the sphere. It achieves better NMSE than other cases
at r = 0 cm. But its performance drops significantly as test
positions move away from the center of the zone. Using more
virtual error microphones achieves better overall noise attenua-
tion within the zone, while the improvement plateaus when K
reaches 100.

Table 5 shows the MCANC performance for generating a
quiet zone using different numbers of canceling loudspeakers.
Similar to the trend observed in the multi-point ANC scenario,
more canceling loudspeakers improve the overall performance
of quiet zone generation. This is because, as the number of
loudspeakers increases, more canceling signals are generated
for canceling or attenuating the primary noise within the fixed
zone. For example, the average NMSE with babble noise is
improved to −12.31 dB from −9.81 dB by using 2 loudspeak-
ers instead of 1, and the NMSE is further improved by 2.07 dB
when 3 loudspeakers are used. With more than 3 loudspeakers,
we expect NMSE performance to further improve, although the
amount of improvement for each added loudspeaker will dimin-
ish.

4.3. Position of canceling loudspeaker

The position of a canceling loudspeaker (the secondary
source) not only influences the system causality but also de-
termines the amount of noise reduction. To explore the influ-
ence of loudspeaker position on ANC performance, we con-
sider three 1×1×100 MCANC setups with different loudspeaker
positions for generating a quiet zone. The distance between the
canceling loudspeaker and the center of the quiet zone is set to
0.1 m, 0.5 m, and 1.9 m, respectively. The corresponding po-
sitions of the canceling loudspeaker are (2.9, 1.5, 1) m, (2.5,
1.5, 1) m, and (1.1, 1.5, 1) m, which are denoted as “Near”,
“Medium” and “Far” cases, respectively. To save training time,
a smaller dataset with 5000 babble noises is used for model
training, and the performance is tested using 100 untrained bab-
ble noises. Table 6 shows the NMSE results. It can be seen that
the “Near” case achieves better noise cancellation at locations
that are close to the center of the quiet zone (locations with

Table 7: Robustness of deep MCANC to variations in reference signals.
1 × 1 × 1 1 × 2 × 1 1 × 1 × 100 1 × 2 × 100

Noise
change

Babble→ Factory -11.83 -15.48 -9.47 -11.87
Babble→ Oproom -11.58 -15.41 -9.19 -10.90
Babble→ SSN -12.33 -16.82 -9.39 -12.36

Noise
mixture

Babble + Factory -11.33 -14.85 -9.12 -11.43
Babble + Oproom -10.99 -14.60 -8.95 -10.64
Babble + SSN -12.41 -17.01 -9.40 -12.42

smaller r) than the other two cases. Moving the canceling loud-
speaker away from the quiet zone (the “Medium” case) results
in weaker noise attenuation. Further increasing the distance be-
tween canceling loudspeaker and the quiet zone, the “Far” case
slightly improves the performance compared to the results ob-
tained in the “Medium” case.

The above observations can be understood from two perspec-
tives. The performance of deep MCANC for generating a quiet
zone relies on the magnitude and phase of anti-noises received
within the spatial zone. From the reverberation point of view,
placing the secondary source nearer to the quiet zone results
in higher direct-to-reverberant-ratio (DRR) in anti-noise. Since
the noise attenuation level is highly related to the direct part
of anti-noise, higher DRR would lead to better noise attenua-
tion. From the wave propagation point of view, given a zone of
fixed size, the waves inside a zone that is farther from the sound
source have smaller intensity variations within the zone due to
the inverse square law of wave propagation (Hartmann, 1998).
This makes noise attenuation within this zone more ”even”. To
show this, we calculate the variance of NMSE obtained within
the zone and present it in the last row of Table 6. It is seen
that the variance of NMSE obtained in the “Far” case is much
smaller than that obtained in the “Near” case.

4.4. Robustness test

In ANC applications, variations may occur in reference sig-
nals due to the change of acoustic environment. Here, we eval-
uate deep MCANC models in situations with noise type change
and multiple noises occurring simultaneously in reference sig-
nals to show the robustness of the proposed method against
these variations. For noise type change, we generate test sig-
nals by changing the noise type in the reference signal from
babble noise to a different noise after 1.5 seconds, the mid-
dle point of a reference signal. For situations with multiple
noises, the reference signal is generated as a mixture of babble
noise and another noise. The test results are given in Table 7,
and they demonstrate the strong robustness of deep MCANC
against such variations in reference signals.

4.5. Nonlinear MCANC

The performance of deep MCANC in the presence of nonlin-
ear distortions is studied in this part. We follow the setup given
in (Zhang & Wang, 2020; Agerkvist, 2007; Ghasemi et al.,
2016) and simulate the saturation nonlinearity of loudspeaker
using the scaled error function (SEF) (Klippel, 2006). That is

fLS(y) = fSEF(y) =
∫ y

0 e−
z2

2η2 dz (7)
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Table 8: Average NMSE (dB) of deep learning based MCANC in the present
of nonlinear distortions.

1 × 2 × 1 1 × 1 × 100
η2 ∞ 0.1 0.5 ∞ 0.1 0.5

Babble -16.43 -16.39 -16.46 -9.68 -9.57 -9.64
Factory -15.54 -15.46 -15.57 -8.90 -8.66 -8.87
Oproom -15.77 -15.73 -15.79 -8.46 -8.41 -8.47
SSN -17.74 -17.79 -17.82 -9.04 -8.97 -9.03

where y is the input to the loudspeaker, and η2 defines the
strength of nonlinearity. The SEF becomes linear as η2 tends
to infinity, and a hard limiter as it tends to zero.

The deep MCANC models are trained using four loudspeaker
functions: η2 = 0.1 (severe nonlinearity), η2 = 1 (moderate
nonlinearity), η2 = 10 (soft nonlinearity), and η2 = ∞ (linear).
During training, we randomly select a loudspeaker function for
each input signal, and generate the loudspeaker signal by pass-
ing a canceling signal through the loudspeaker function. For
testing, both trained and untrained (η2 = 0.5) loudspeaker func-
tions are used. The results are given in Table 8. These results
show that deep MCANC models can be trained to achieve noise
attenuation in both linear and nonlinear situations.

4.6. Noise attenuation performance under real recordings

Finally, nonstationary noises from the DEMAND corpus
(Thiemann et al., 2013) are used to test the performance of deep
ANC in realistic conditions. All recordings of the DEMAND
corpus are five-minute long and recorded with a 16-channel ar-
ray. We randomly select one channel of the recordings for test-
ing.

The DEMAND dataset has six categories of noises. We
choose one noise from each category to represent distinct en-
vironments. These six nonstationary noises is described as fol-
lows.

• The “Nature” category: The NRIVER noise, recorded be-
sides a creek of running water.

• The “Office” category: The OMEETING noise, recorded
in a meeting room.

• The “Domestic” category: The DLIVING noise, recorded
inside a living room.

• The “Public” category: The PRESTO noise, recorded in a
university restaurant at lunchtime.

• The “Street” category: The SPSQUARE noise, recorded
in a public town square with many tourists.

• The “Transportation” category: The TMETRO noise,
recorded in a subway.

The NMSE results are given in Table 9. These results show
that the proposed deep MCANC works well for recorded noises
under different realistic environments.

Table 9: Average NMSE (dB) of deep MCANC tested on recorded noises in six
realistic environments.

1 × 1 × 1 1 × 2 × 1 1 × 1 × 100 1 × 2 × 100
NRIVER -10.92 -13.05 -7.22 -9.10
OMEETING -12.08 -14.00 -9.37 -10.93
DLIVING -11.68 -11.93 -9.34 -9.85
PRESTO -12.76 -15.10 -8.52 -10.15
SPSQUARE -10.81 -11.08 -8.44 -9.35
TMETRO -11.30 -11.91 -9.10 -9.91

5. Discussion

This paper demonstrates the utility of deep learning for solv-
ing MCANC problems. For quiet zone generation, we inves-
tigate the feasibility of using fewer virtual error microphones
for efficient model training. In comparison to deep MCANC
trained with a large number of virtual error microphones, train-
ing a model using a subset of the virtual microphones, say 20%,
achieves comparable quiet zone performance while requiring
less computation.

Compared with traditional methods, deep MCANC has the
following advantages. First, deep MCANC is capable of can-
celing different types of noise and effective for wideband noise
attenuation. Second, rather than training a separate ANC for
each channel, the proposed method approaches MCANC by
training a single controller to generate multi-channel outputs.
Third, deep MCANC can be trained to generate a quiet zone
using a single canceling loudspeaker and does not need phys-
ical error microphones during the inference stage. Fourth, the
proposed method can inherently deal with nonlinear distortions.
Moreover, as we have shown previously, deep ANC is flexible
in terms of training target, e.g., it can be trained to selectively
attenuate the noise components of a noisy speech signal and let
the underlying speech pass through (Zhang & Wang, 2021a).
This advantage holds for deep MCANC.

Two main issues are worth discussing, which are generaliza-
tion ability and processing latency. Limited generalization abil-
ity is a common problem for fixed-parameter ANC methods. To
address this, we employ large-scale multi-condition training to
make deep MCANC robust against a variety of noises. Other
methods like selective fixed-parameter ANC (Shi et al., 2018,
2020; Ranjan et al., 2016; Shi et al., 2022) have also been pro-
posed to improve generalization ability. These methods work
by pre-training multiple fixed-coefficient sets for different envi-
ronments and selecting a proper one for noise attenuation dur-
ing the inference stage. In addition, using a hybrid approach
that combines fixed-parameter and adaptive ANC could be ex-
plored for further improving the generalization ability of deep
MCANC.

The processing latency is an important issue due to the
causality constraint of ANC systems, whereby the signal of
the canceling loudspeaker has to be generated before the actual
noise propagates to the canceling loudspeaker. Deep MCANC
is a frequency domain method, which incurs an algorithmic de-
lay related to the frame length and frame shift of STFT. This
kind of delay is considered as a shortcoming for frequency-
domain ANC algorithms and many approaches have been pro-
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posed to overcome this (Yang et al., 2018; Kim et al., 1994;
Kuo et al., 2008; Bendel et al., 2001). We have proposed a
delay-compensated training strategy in (Zhang & Wang, 2021a)
to tackle this latency problem and it can be utilized in deep
MCANC as well. In addition, implementing deep MCANC
using low-latency time-domain methods (Luo & Mesgarani,
2019; Pandey & Wang, 2019, 2021) could alleviate the latency
problem.

In terms of computational complexity, the proposed deep
MCANC system contains about 8.8 million (M) trainable pa-
rameters and takes 12.72 M floating-point fused multiply-adds
per time frame. As expected, the DNN model requires more
computations than traditional adaptive algorithms. Model com-
pression and efficient implementation will be addressed in fu-
ture studies to enable deep MCANC in real-world applications.

The MCANC formulation in this paper is focused on the sit-
uation with a single noise source. However, our formulation
can be straightforwardly extended to the situation with multiple
noise sources at different locations. In this case, the number of
primary paths will be increased to M ×K, where M is the num-
ber of noise sources. The corresponding error signal sensed by
the kth error microphone will be expanded to (cf. Eq. (3))

ek(n) =

M∑
m=1

dmk(n) −
J∑

j=1

a jk(n) (8)

and Eq. (4) will be modified to

dmk(n) = pmk(n) ∗ sm(n) (9)

where sm(n) is the mth noise source, and dmk(n) is the corre-
sponding primary noise at error microphone k. The overall pro-
cedure of using deep MCANC for noise attenuation with single
and multiple noise sources would otherwise be the same. It is
worth noting that attenuating multiple noise sources jointly usu-
ally places a separate reference microphone near each source;
for example, for road noise cancellation in the in-car environ-
ment, a sensor is installed at each wheel to capture the road
generated noise (Sano et al., 2001).

6. Conclusion

In this paper, we have introduced a deep MCANC approach
to multi-channel active noise control. The proposed approach
trains a CRN model to estimate multiple canceling signals si-
multaneously from reference signals so that the corresponding
anti-noises cancel or attenuate the primary noises. We have
evaluated the performance of deep MCANC for multi-point
ANC and quiet zone generation. The impact of factors such as
the number of canceling loudspeakers and error microphones,
and the position of a canceling loudspeaker on MCANC per-
formance has been investigated. Extensive experimental results
show the effectiveness of deep MCANC for noise attenuation
in various scenarios. In addition, the proposed method is ro-
bust against untrained noises and works well in the presence
of loudspeaker nonlinearity. Future work includes exploring
time-domain methods and considering practical issues such as
computational complexity.
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